خودریختی های بورل فضاهای لهستانی
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس - دانشکده علوم ریاضی
- نویسنده حمیدرضا رازمنش
- استاد راهنما سیدمحمد باقری شهرام محسنی پور
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1391
چکیده
به یاد می آوریم که یک خودسانی بورل ، یک نگاشت دوسویی از یک فضا به خودش می باشد که گراف از آن یک مجموعه بورل باشد. از طرفی می توان بر روی این خودسانی ها ، روابط هم ارزی مناسبی تعریف کرد. در این پایان نامه برآنیم که به دو سوال پیچیده در مورد خودسانی های بورل فضاهای لهستانی پاسخ دهیم: 1-آیا روابط هم ارزی بین خودسانی های بورل فضاهای لهستانی با روابط هم ارزی بورلی ، فرو کاست پذیر بورلیند؟ 2-آیا روابط هم ارزی بین خودسانی های بورل فضاهای لهستانی?- کاملند؟
منابع مشابه
وجود گروه های لهستانی با عمل ترایا بر فضاهای همگن لهستانی
قضیه ی افرس درباره ی عمل هایی از گروه های لهستانی روی فضاهای لهستانی در بخشی از موارد خود بیان می دارد که اگر g گروه لهستانی باشد و روی فضای لهستانیx ترایا عمل کند، آنگاه x یک فضای همرده ازg است. با الهام از این موضوع، ما نشان می دهیم برای هر فضای همگن و موضعا همگن قوی لهستانی x، وجود دارد یک گروه لهستانی که، بطور ترایا روی آن عمل می کند. یعنی x فضای همرده از گروه لهستانی است. همچنین به...
15 صفحه اولمجموعه فاصله ها در فضاهای لهستانی
هدف ما بررسی مجموعه ی فاصله های (بین نقاط) یک فضای لهستانی است. به همین منظور، در فصل اول آشنایی کوتاهی با فضاهای لهستانی و انواع خاص فضاهای متریک، مجموعه های افکنشی، آناکاویک و مکمل آناکاویک خواهیم داشت. قبلاً بررسی هایی راجع به مجموعه فاصله فضاهای متریک انجام شده است. در فصل دوم، قضایای پایه ای فضاهای لهستانی و مجموعه های آناکاویک را بررسی می کنیم. فصل سوم نیز، با اصلی ترین قضیه ی این پایان...
15 صفحه اولرده بندیتوپولوژیکی فضاهای توابع (cp(x با پیچیدگی بورل پایین
در این پایان نامه ثابت می کنیم که اگرx فضای کاملا منظم و غیرگسسته و شمارا باشد به طوری که فضای توابع(cp(x یک f??-مجموعه ی مطلق باشد آنگاه فضای (cp(x با ?? همسانریخت است. یکی از کاربردهای این اثبات در این است که مابه چندین مسئله که توسط آرهانگل مطرح شده بود پاسخ منفی دادیم، این کار به وسیله ی مثالهایی از فضاهای کاملا منظم و شمارش پذیر x و y که x یک br-فضاو k-فضا نباشد و همچنین y نیز یک ?0-فضا ...
15 صفحه اولبررسی فضاهای پوششی و گروه خودریختی فضاهای پوششی
در این پایان نامه به بیان مفهوم تاربندی ها می پردازیم و نشان می دهیم تاربندی ها تعمیمی از نگاشت های پوششی هستند. سپس تعدادی از خواص جبری فضا های پوششی و گروه خودریختی فضا های پوششی را به دست می آوریم. در ادامه با معرفی فضا ها ی پوششی عمومی، منظم و گالوا به طبقه بندی فضا ها ی پوششی پرداخته و ثابت می کنیم هر فضای پوششی عمومی یک فضای پوششی منظم و هر فضای پوششی منظم یک فضای پوششی گالوا است. در انته...
منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس - دانشکده علوم ریاضی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023